DP – Prognosis[™] FC User Manual (for ROC800-Series)

😬 ROCLINK 800 - [DPMD Parameters - Remote Oprtns Cntrlr]	
Eile Edit View ROC Configure Gas Meters Liquid Meters Utilities Tools Window Help Edit	
D 😅 🖬 % 🖻 💼 🚑 🕮 🍹 🍳 🔍 / M / M 🐜 // / M 🛱 冬 🛇 🖬 🖺 🗳 1	⊎ 🗗 ? №?
Point Number : 1 - Orifice 1	<u> </u>
Meter Description Program S DP Meter Diagnostic Tag Seconds Until Next Scheduled Diagn	
🔲 Enable Diagnostics 👘 Run Diagnostic	Command
Results Configuration Advanced Intermediate Detail	
Diagnostic Completed	
DP Flow Alarms Pa Kg/sec Traditional to Permanent Ma 1 · Traditional Meter 0.0 0.0 Traditional to Permanent Pre-	
2 · Recovery Meter 0.0 0.0 Traditional to Recovery Mas Traditional to Recovery Pres	
3 - Permanent Meter 0.0	s Flow Rate (x3) Alarm
Inlet Pressure 0,0 Pa	sure Ratio (y3) Alarm
Pattern Alarm: No Pattern Match	
Print Save As Au	to Scan 🚺 Update 🔤 Close 🕴 Apply 🔻
•	
	ON-LINE 5:55 PM

Remote Automation Solutions

Revision Tracking Sheet January 2017

This manual may be revised periodically to incorporate new or updated information. The revision date of each page appears at the bottom of the page opposite the page number. A change in revision date to any page also changes the date of the manual that appears on the front cover. Listed below is the revision date of each page (if applicable):

Page Initial release Revision January-2017

Contents

Chapter 1 – Introduction

1.1	Scope a	and Organization	1
1.2	Product	Overview	2
	1.2.1	Theory of Operation	2
	1.2.2	Practical Application	4
	1.2.3	Operational Benefits	4
1.3	Program	n Features	4
	1.3.1	DP – Prognosis FC for up to 12 Meter runs	4
	1.3.2	Three Supported Meter Types	4
	1.3.3	Customary Seven Diagnostics	
	1.3.4	Support for Stacked DPs	5
	1.3.5	Supports two or three measured DPs	5
	1.3.6	Adjustable Diagnostic Frequency	.5
	1.3.7	Multi-pass Averaging	.5
	1.3.8	Pattern Matching	.5
1.4	Program	n Requirements	.5
	1.4.1	License Kev	6

Chapter 2 – Installation

2.1	Installing the License Key	7
	2.1.1 Verifying the License Key Installation	
2.2 I	Downloading the Program	8
	MPU Loading Threshold	

Chapter 3 – Configuration

3.1	Results	17
	Configuration	
3.3	Advanced	24
3.4	Intermediate	26
	Detail	
3.6	Saving the Configuration	33

Chapter 4 – Reference

35	
00	

7

15

1

41	Point Type 220: DP – Prognosis FC Parameters	36
	Program Status Codes and Messages	
	Pattern Match Codes and Messages	
	Zeroing the meter for Prognosis FC	

[This page is intentionally left blank.]

Chapter 1 – Introduction

▲ Caution When implementing control using this product, observe best industry practices as suggested by applicable and appropriate environmental, health, and safety organizations. While this product can be used as a safety component in a system, it is NOT intended or designed to be the ONLY safety mechanism in that system.

This chapter describes the structure of this manual and an overview of the DP – Prognosis[™] FC program for the ROC800-Series Remote Operations Controller (ROC800).

1.1 Scope and Organization

This document serves as the user manual for the DP – Prognosis FC program, which is intended for use in the ROC800-Series Remote Operations Controllers (ROC800).

This manual describes how to download and configure this program (referred to as the "DP – Prognosis FC program" or "the program" throughout the rest of this manual). You access and configure this program using ROCLINK[™] 800 Configuration Software (version 2.41 or greater) loaded on a personal computer (PC) running Windows[®] 7 (32 or 64-bit).

The sections in this manual provide information in a sequence appropriate for first-time users. Once you become familiar with the procedures and the software running in ROC800, the manual becomes a reference tool.

This manual has the following major sections:

- Chapter 1 Introduction
- Chapter 2 Installation
- Chapter 3 Configuration
- Chapter 4 Reference

This manual assumes that you are familiar with the ROC800 and its configuration. For more information, refer to the following manuals:

- ROC800 Remote Operations Controller Instruction Manual (part D301217X012)
- ROCLINK 800[™] Configuration Software User Manual (for ROC800-Series) (part D301250X012)

1.2 Product Overview

The DP – Prognosis FC program is used to verify the operation of a differential pressure (DP) meter element and its differential pressure instrumentation. The program is designed to work with Orifice Meters, Venturi meters or Cone meters.

1.2.1 Theory of Operation

A DP meter uses a geometric constriction to produce momentum change in a flow. *Figure 1-1* shows an orifice meter and the associated pressure profile in the pipe.



Figure 1-1. Traditional orifice meter pressure profile

Applying mass and energy conservation equations between pipe cross sections upstream and in the vicinity of the constriction produces a flow rate equation dependent on geometry, fluid density and DP.

Traditionally, the differential pressure is measured between a point upstream of the restriction and the point of lowest pressure (vena contracta). Flow calculations are performed using this differential pressure value.

It has been shown that the constriction in a DP meter element actually produces three predictable and repeatable pressure changes in the flow stream. The *Traditional DP* ($\triangle P_t$) – mentioned previously - is measured across the restriction. The *Recovery DP* ($\triangle P_{rec}$) can be measured between the downstream tap and a far downstream tap (~6 diameters downstream for an orifice meter). The *Permanent DP* ($\triangle P_{ppl}$) is measured between the upstream pressure tap and the far downstream tap. *Figure 1-2* shows how these three values can be observed.

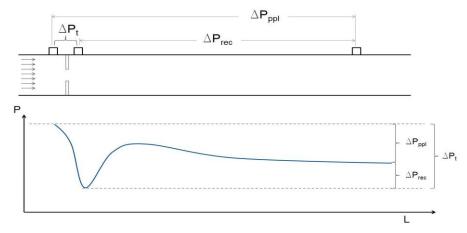


Figure 1-2. Three differential pressures for the DP meter

The DP – Prognosis FC approach involves:

- Measuring all three DPs at the meter element (optionally, two of the DPs can be measured and one can be inferred, but this produces less reliable results).
- Performing flow calculations for all three meters.
- Comparing the flow rates of the three meters producing three diagnostic values (*diagnostics*).
- Comparing the pressure loss ratios of the three DPs to theoretical values for pressure loss ratios – producing three diagnostic values (*diagnostics*).
- Comparing the numerical values of the three DPs for consistency $(\triangle P_t = \triangle P_{rec} + \triangle P_{ppl}).$

As can be seen, this results in seven different uncertainty parameters – referred to as *diagnostics*. Customarily, the seven diagnostics are each compared to allowable uncertainty setpoints – thereby converting the values to dimensionless form. For instance,

Calculated *traditional* flow rate = 10.100

Calculated *permanent* flow rate = 10.800

Percent Difference = 100 * (10.800 - 10.100) / 10.100 = 6.93%

If the allowable percentage for this difference was configured to 2%, then the dimensionless value of the first diagnostic (x1) would be:

6.93% / 2% = 3.47

In dimensionless form, any value between -1.0 and 1.0 is considered to be indicative of a properly-performing meter.

1.2.2 Practical Application

The DP – Prognosis FC approach can be used to monitor the operation of a DP meter with the intent of identifying uncertainty in the traditional calculated measurement. Using the DP diagnostic approach, the following conditions have been identified in orifice meters:

- Orifice plate installed backwards
- Damaged orifice plate (worn sharp edge, warped plate, dirty plate)
- Obstructed flow in meter tube or through orifice
- Physical plate or meter tube size different from values configured in flow computer
- Plugged or leaking transmitter impulse line
- Transmitter calibration error
- Transmitter calibration drift
- Equalizing valve on instrument manifold leaking
- Wet gas

1.2.3 Operational Benefits

The DP – Prognosis FC operating at a meter installation, the meter can be managed by exception. Routine, scheduled inspection/calibration procedures can be modified such that technicians address known measurement problems immediately when exceptions are noted – rather than waiting until the problem is discovered during the next scheduled inspection. Furthermore, the time of onset of the exception can be precisely identified – assisting in proper correction to flow data.

Common operating mistakes (installing plate backwards, changing plate without changing flow computer configuration) are quickly identified and clarified when DP diagnostics is running in the Flow Computer.

1.3 Program Features

1.3.1 DP – Prognosis FC for up to 12 Meter runs

The single license enables the Prognosis feature for all meters on the ROC800.

1.3.2 Three Supported Meter Types

The program works with Orifice, Venturi, and Cone meters.

1.3.3 Customary Seven Diagnostics

The program produces the customary seven diagnostic values.

1.3.4 Support for Stacked DPs

The program supports use of stacked DP instruments for Recovery and for Permanent DP instruments

1.3.5 Supports two or three measured DPs

Although it is not recommended, the program can function using just one additional DP instrument (plus the traditional DP). When either the Recovery DP or the Permanent DP instruments are not configured, the value of the unmeasured DP will be calculated from the other two DPs.

1.3.6 Adjustable Diagnostic Frequency

The diagnostic calculations can be run at a frequency ranging from once per second to once per 255 days.

When main processor loading is a concern, the frequency of the calculation can be reduced to alleviate processor loading.

1.3.7 Multi-pass Averaging

The program can be configured to perform multiple calculation cycles and use the resulting average value of the seven diagnostics. This feature can be used when there is high latency in DP measured values or when wet gas is expected – to reduce nuisance alerts.

1.3.8 Pattern Matching

After the seven diagnostic values are calculated, the relationship of these values to each other is compared with known pattern signatures. This results in a pattern match code and text message which can provide insight as to the particular problem – if any – with the meter.

1.4 Program Requirements

The DP – Prognosis FC program is compatible with version 3.61 (or greater) of the ROC800 firmware or version 1.60 (or greater) of ROC800L with version 2.41 (or greater) of the ROCLINK 800 software.

Program specifics include:File Name	Target Unit/ Version	User Defined Points (UDP)	Flash Used (in bytes)	DRAM Used (in bytes)	ROCLINK 800 Version	Display Number
DPMD.tar	ROC800 v3.61 or ROC800L v1.60	220	68653	131072	2.41	221

For information on viewing the memory allocation of user programs, refer to the *ROCLINK 800 Configuration Software User Manual (for ROC800)* (part D301250X012).

1.4.1 License Key

License keys, when matched with valid license codes, grant access to applications such as the DP – Prognosis FC program.

For **ROC800 and ROC800L**, the term "license key" refers to the physical piece of hardware that can contain up to seven different licenses (refer to *Figure 1-1*). Each ROC800-series can have none, one, or two license keys installed. If you remove a license key after enabling an application, the firmware disables the task from running. This prevents unauthorized execution of protected applications in a ROC800.

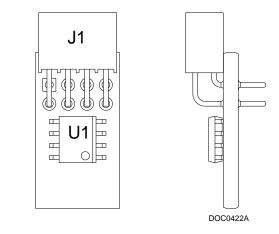


Figure 1-4. License Key

Note: A single license of the DP – Prognosis FC program for **ROC800**series enables Prognosis FC for all meter runs.

Chapter 2 – Installation

This section provides instructions for installing the DP – Prognosis FC program into the ROC800. Read *Section 1.4* of this manual for program requirements.

Note: The program and license key can be installed in any order. The manual shows the installation of the license key first.

2.1 Installing the License Key

If you order the DP – Prognosis FC program for a new ROC800, your ROC800 is delivered with the license key installed.

If you order the program for an existing ROC800, you must install the license key yourself.

Caution Failure to exercise proper electrostatic discharge precautions, such as wearing a grounded wrist strap may reset the processor or damage electronic components, resulting in interrupted operations.

When working on units located in a hazardous area (where explosive gases may be present), make sure the area is in a non-hazardous state before performing these procedures. Performing these procedures in a hazardous area could result in personal injury or property damage.

To install a license key:

- **1.** Remove power from the ROC800.
- 2. If necessary, remove the wire channel cover.
- **3.** Unscrew the screws from the Central Processing Unit (CPU) faceplate.
- **4.** Remove the CPU faceplate.
- 5. Place the license key in the appropriate terminal slot (P4 or P6) in the CPU (refer to *Figure 2-1*).

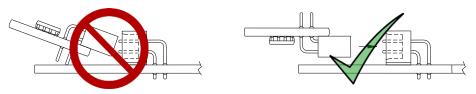


Figure 2-1. License Key Installation

Note: When using a single license key, install it in slot P4.

- **6.** Press the license key into the terminal until it is firmly seated (refer to *Figure 2-1*).
- **7.** Re-attach the CPU faceplate.

- **8.** Re-attach the screws on the CPU faceplate.
- **9.** If necessary, re-attach the wire channel cover.
- **10.** Restore power to the ROC800.

2.1.1 Verifying the License Key Installation

After you install the license key, you can verify whether the ROC800 recognizes the key. From the ROCLINK 800 screen, select **Utilities** > **License Key Administrator**. The License Key Administrator screen displays:

Num	Application Name	Provider Name	AppCode	Version	Quantity	#Available	Expiration	Time Created
1	Auto-Adjust	Emerson	2	1.0.0	1	1	No Expiration	09/24/2010 13:42:0
2	AGA_3/7/8	Emerson	6	1.0.0	2	0	No Expiration	12/07/2006 14:40:2
3	IAPWS 97 Steam C	Emerson	10	1.0.0	1	1	No Expiration	04/11/2007 12:42:2
4	Auto-Adjust	Emerson	2	1.0.0	10	10	No Expiration	09/24/2010 13:42:2
5	GC Interface	Emerson	10	1.0.0	1	1	No Expiration	10/24/2005 09:01:1
6	Auto-Adjust	Emerson	1	1.0.0	1	1	No Expiration	09/28/2005 13:04:5
7 icer	Heat Exchanger	Emerson	2 <u>M</u> ove	0.0.0	1	<u>S</u> plit	No Expiration	04/19/2004 13:51:2
	nse Key #2	Emerson	<u>M</u> ove	Merge		<u>S</u> plit		04/19/2004 13:51:2
	-		Move	Merge		<u>S</u> plit #Available		Time Created
	nse Key #2 Application Name	Provider Name	Move AppCode	Merge Version		<u>S</u> plit #Available	Expiration	
Num 1	nse Key #2 Application Name DS800 Runtime	Provider Name Emerson	Move AppCode 0 12	Version 0.0.0		<u>S</u> plit #Available 0	Expiration No Expiration	Time Created 11/16/2005 13:35:2 01/09/2017 12:06:0
Num 1 2	nse Key #2 Application Name DS800 Runtime DP_Diagnostics	Provider Name Emerson Emerson	Move AppCode 0 12	Version 0.0.0 0.0.0		<u>S</u> plit #Available 0	Expiration No Expiration No Expiration	Time Created 11/16/2005 13:35:2
Num 1 2	nse Key #2 Application Name DS800 Runtime DP_Diagnostics	Provider Name Emerson Emerson	Move AppCode 0 12	Version 0.0.0 0.0.0		<u>S</u> plit #Available 0	Expiration No Expiration No Expiration	Time Created 11/16/2005 13:35: 01/09/2017 12:06:

Figure 2-2. License Key Administrator

The DP – Prognosis FC program appears in the Application Name column. (For further information on the License Key Administrator screen, refer to the *ROCLINK 800 Configuration Software User Manual (for ROC800-Series)*, part D301250X012.)

After you verify that the license key is correctly installed and recognized, proceed to *Section 2.2*.

2.2 Downloading the Program

This section provides instructions for installing the program into the Flash memory on the ROC800.

To download the user program using ROCLINK 800 software:

- 1. Connect the ROC800 to your computer.
- **2.** Start and logon to the ROCLINK 800.
- **3.** Select **ROC** > **Direct Connect** to connect to the ROC800.

4. Select **Utilities** > **User Program Administrator** from the ROCLINK menu bar. The User Program Administrator screen displays (see *Figure 2-3*):

Device User Program Environment	
SRAM : 6002 198798 DRAM : 204800 18006016 FLASH : 258560 3354112 Library Versior	n : 29.0
User Programs Installed in Device 1 - No Program Name : No Program 2 - No Program Version : 3 - No Program Created : 6 - No Program Handle : 7 - No Program Entry Pt : 8 - No Program Displays : Clear Start All - Option Status : Empty	Library Version : DRAM Used : 0 FLASH Used : 0 Restart Counter : 0 Reset Counter
All - Option Status : Empty Download User Program File	Browse Download & Start Download

Figure 2-3. User Program Administrator

- **5.** Select any empty program number (in this case, number 1) into which to download the program.
- **6.** Click **Browse** in the Download User Program File frame. The Select User Program File screen displays (see *Figure 2-4*).
- **7.** Select the path and user program file to download from the CD-ROM. (Program files are typically located in the Program Files folder on the CD-ROM.) As *Figure 2-4* shows, the screen lists all valid user program files with the .TAR extension:

😋 🔾 🗢 📗 🕨 Computer 🛛	CD-ROM (E:) Program Files	•	Search PM	TM_v409_00u	Q
Organize 🔻 📄 Open	Share with 🔻 E-mail Burn	New folder		•== •	0
ጵ Favorites 📃 Desktop	Documents library Program Files			Arrange by:	Folder 🔻
🚺 Downloads 🗐 Recent Places	Name	Date modified	Туре	Size	
in Recent Places	DPMD.tar	12/22/2016 6:25 AM	TAR File	70 KB	
 □ Libraries □ Documents ↓ Music □ Pictures ■ Videos Ideos Ideos 					
CD-ROM (E:)					
🎍 Program Files					
DPMD.tar Date n TAR File	nodified: 12/22/2016 6:25 AM Date of Size: 70.0 KB	created: 1/9/2017 10:28 PM			

Figure 2-4. Select User Program File

8. Click **Open** to select the program file. The User Program Administrator screen displays. As shown in *Figure 2-5*, note that the Download User Program File frame identifies the selected program and that the **Download & Start** button is active:

User Program Administrator Device User Program Environmer Used Free SRAM: 72136 132664		E
DRAM : 72136 132664 DRAM : 2392064 15749120 FLASH : 783872 2828800		n: 29.0
User Programs Installed in Device		
1 - No Program 2 - No Program	Name : No Program	
3 - No Program	Version :	Library Version :
4 - No Program 5 - No Program	Created :	DRAM Used : 0
6 - No Program	Handle :	FLASH Used : 0
7 - No Program 8 - No Program	Entry Pt :	
	Proc ID :	
Clear Start Stop	Displays :	Restart Counter : 0
🔲 All - Option	Status : Empty	Reset Co
Download User Program File		
E:\Program Files\DPMD.tar		Brow
		Download & Start Dow
		Dominada a otar
		🕼 Update 🛛 🗘

Figure 2-5. User Program Administrator

9. Click **Download & Start** to begin loading the selected program. The following message displays:

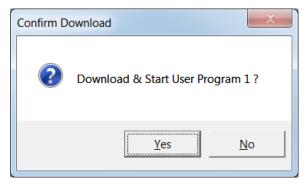


Figure 2-6. Confirm Download

10. Click **Yes** to begin the download. When the download completes the following message displays:

ROCLINK 800	×
Download & Start U	ser Program COMPLETED.
	ОК

Figure 2-7. ROCLINK 800 Download Confirmation

- **11.** Click **OK**. The User Program Administrator screen displays (see *Figure 2-8*). Note that:
 - The Device User Program Environment frame reflects the use of system memory.
 - The User Programs Installed in Device frame identifies the installed program(s).
 - The Status field indicates that the program is running.

	User Program Administrator		? 💌
	Device User Program Environment <u>Used Free</u> SRAM : 87352 117448 DRAM : 2535424 15605760 FLASH : 854016 2758656	Library Version : 29.	0
\langle	User Programs Installed in Device 1 - DPMD 2 - No Program 3 - No Program 4 - No Program 5 - No Program 6 - No Program 7 - No Program 8 - No Program 8 - No Program Clear Start Stop	Name : DPMD Version : 1.00 Created : 12/21/2016 16:25:52 Handle : 1 Entry Pt : 0x3116D60 Proc ID : 0x100AF Displays : 221	Library Version : 27.0 DRAM Used : 131072 FLASH Used : 68653 Restart Counter : 0
	All - Option	Status : Running	Reset Counter
	Download User Program File		Browse
		Dov	vnload & Start Download
			🗘 Update 🛛 Close

Figure 2-8. User Program Administrator

12. Click **Close**. Proceed to Chapter 3 – Configuration to configure the program.

2.3 MPU Loading Threshold

To maximize the performance of your ROC800 device, always verify the performance of specific application combinations before using them in the field to ensure the MPU load typically remains **below** 85% with peak MPU loading levels **below** 95%.

To check the current MPU load at any time, select **ROC** > **Information** > **Other Information** and review the value in the MPU loading field.

Device Information	? ×
Module Information General Internet Points Other Information System Configuration Expanded I/O	
Version Name : W68258 Ver1.51	
Time Created : Nov 23, 2015 10:12	
Vender ID - Emerson Process Mamt	
MPU Loading : 22.8169	
Boot Version : WV60232 Verz.uu	
Time Created : Oct 10, 2008 14:16	
Last Power Down Time : 03/19/2016 15:57:33 Last Power Up Time : 03/19/2016 15:57:37	
Dupdate V OK X Cancel	! <u>A</u> pply

Figure 2-9. MPU Loading

[This page is intentionally left blank.]

Chapter 3 – Configuration

This section provides information to configure the DP – Prognosis FC program.

Once you have successfully loaded the DP – Prognosis FC program into the ROC800, a single user display is available. This display contains these tabs:

- Results
- Configuration
- Advanced
- Intermediate
- Detail

Note: The DP – Prognosis FC meter runs corresponds to orifice meter number 1 in the ROC800. For example, Prognosis FC Point Number 1 corresponds to meter number 1 in the ROC. The corresponding meter run in the ROC should be configured and calculating flow before configuring DP meter diagnostics for the run. For further information on the configuration of the orifice meter runs, refer to the *ROCLINK 800[™] Configuration Software User Manual (for ROC800-Series)* (part D301250X012).

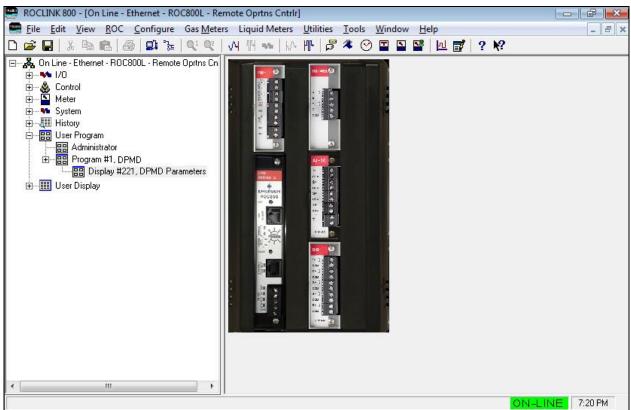


Figure 3-1. Main ROCLINK 800 screen

To access the program:

 From the Directory Tree, select User Program > Program #1, DPMD.

2.	Double-click	Display	#221,	DPMD	Parameters.
----	--------------	----------------	-------	------	-------------

📟 ROCLINK 800 -	[DPMD Parameters - R	emote Oprtns Cntrlr]	
🧱 <u>F</u> ile <u>E</u> dit <u>V</u> i	ew <u>R</u> OC <u>C</u> onfigure	Gas <u>M</u> eters Liquid Meters <u>U</u> tilities <u>T</u> ools <u>W</u> indow <u>H</u> elp	_ 8 ×
🗅 🚔 🖬 🐰 🗉	d R. 🏼 🕄 🕄	: 🔍 🔍 🙌 1H 🐜 //- 1H 🖻 褌 🕑 🔳 🖺 🗳 🔟 💕 🤶 🛠	
Point Number : 1 - 0	rifice 1		<u> </u>
DP	Meter Description Meter Diagnostic Tag Results Configuration	Program Status Seconds Until Next Scheduled Diagnostic Enable Diagnostics Run Diagnostic Command Advanced Intermediate Detail	
		DP Flow Alarms Pa Kg/sec Traditional to Permanent Mass Flow Rate (x1) Alarm	
	1 - Traditional Meter	CO CO	
	2 - Recovery Meter	0.0 0.0 Traditional to Recovery Mass Flow Rate (x2) Alarm Traditional to Recovery Pressure Ratio (y2) Alarm	
	3 - Permanent Meter	0.0 0.0 Recovery to Permanent Mass Flow Rate (x3) Alarm	
	Inlet Pr	Recovery to Permanent Pressure Ratio (93) Alarm	
	meeri		
	Pattern Alarm: 🚺	lo Pattern Match	-
	i anoni i anni ji		
_			
		Print Save As Auto Scan 😰 Update Close	! Apply
•	[¥
		ON-LI	NE 5:55 PM

Figure 3-2. DPMD Parameters

1. Review the following fields:

Field	Description
Point Number	Sets the meter for diagnostic.
Meter Description	This read-only field displays the meter description.
DP Meter Diagnostic Tag	Sets the description of the meter.

Field	Description
Program Status	This read-only field displays the program status. For possible status codes and messages, see Section 4.2 of this manual.
Seconds Until Next Scheduled Diagnostic	This read-only field displays the next scheduled diagnostic in seconds.
Enable Diagnostics	Enables diagnostics for the specified meter.
Run Diagnostic Command	Select this option to perform an instantaneous diagnostic of the meter.

2. Proceed to the Section 3.1 – Results tab.

3.1 Results

Each time the Prognosis FC calculations complete, the Results tab of the Configuration screen provides the summary results of the calculations.

🔛 ROCLINK 800 - [DP	MD Parameters - I	Remote Oprtns Cntrlr]		
			<u>U</u> tilities <u>T</u> ools <u>W</u> indow <u>H</u> elp	_ & ×
D 🖻 🖬 🕺 🖻	8 8 9 7	🖻 🔍 🔍 🖓 🖑 🐝 🕅	₩ 🛱 冬 🖸 🖺 🗳 ២ 📑 ? 🕅	
Point Number : 1 - Orifice	e1 🔹			-
	Meter Description ter Diagnostic Tag utts: Configuration	Enable Diagnostics Advanced Intermediate Detail	Program Status Seconds Until Next Scheduled Diagnostic 0 Run Diagnostic Command	
		Dp Flow Pa Kg/sec		
1	- Traditional Meter	Pa Kg/sec 87295.39 3.039475	 Traditional to Permanent Mass Flow Rate (x1) Alarm Traditional to Permanent Pressure Ratio (y1) Alarm 	
	2 - Recovery Meter	23751.66 3.089623	Traditional to Recovery Mass Flow Rate (x2) Alarm Traditional to Recovery Pressure Ratio (y2) Alarm	
	- Permanent Meter	68725.38 3.142122	Recovery to Permanent Mass Flow Rate (x3) Alarm	
, i i i i i i i i i i i i i i i i i i i		Pressure 2794307.0 Pa	Recovery to Permanent Pressure Ratio (y3) Alarm Dp Comarison (x4) Alarm	
			Is be contaison (w) Alam	
	Pattern Alarm:	One or more DP is in Error		-
			Print Save As AutoScan Dupdate Close	L Apply
•				· <u>DPPy</u>
		1	ON-LI	NE 5:55 PM

Figure 3-3. Results tab

1. Review the following fields:

Field	Description
Diagnostic	This read-only field displays the timestamp of
Completed	the most recent diagnostic run. Provides both
	UNIX timestamp and the formatted date/time.
1 – Traditional	Lists the values for the Traditional Meter.
Meter	Note: The Prognosis FC calculations are
	performed in metric units – regardless of
	the units of measure configured in the
	ROC800.
Dp	This read-only field displays the Traditional Dp
	used for the calculations.
Flow	This read-only field displays the Mass Flow Rate
	as calculated via the Traditional meter.

Field	Description
2 – Recovery Meter	Lists the values for the Recovery Meter.
	Note: The Prognosis FC calculations are
	performed in metric units – regardless of
	the units of measure configured in the
	ROC800.
Dp _	This read-only field displays the Recovery Dp
•	used for the calculations.
Flow	This read-only field displays the Mass Flow Rat
	as calculated via the recovery meter.
3 – Permanent	Lists the values for the Permanent Meter.
Meter	Note : The Prognosis FC calculations are
Meter	performed in metric units – regardless of
	the units of measure configured in the ROC800.
D., -	
Dp	
	Dp used for the calculations.
Flow	This read-only field displays the Mass Flow
· · ·	Rate as calculated via the Permanent meter.
Inlet Pressure	This read-only field displays the inlet pressure
	for the meter(s).
	Note: The Prognosis FC calculations are
	performed in metric units – regardless of
	the units of measure configured in the
	ROC800.
Alarms	Checkboxes indicate which – if any – of the
	seven diagnostic parameters exceeds
	configured acceptable values. When one or
	more parameters exceeds acceptable values,
	the red box is displayed around this section of
	the screen.
Traditional to	When this alarm is selected, there is excessive
Permanent Mass	difference between the mass flow rates derived
Flow Rate (x1)	from the traditional and the permanent meters.
Alarm	nom the traditional and the permanent motore.
Traditional to	When this alarm is selected, there is excessive
Permanent	difference between the observed and
Pressure Ratio (y1)	theoretical values for permanent pressure ratio.
Alarm	When this alarm is calented there is avagative
Traditional to	When this alarm is selected, there is excessive difference between the mass flow rates derived
Recovery Mass	
Flow Rate (x2)	from the traditional and the recovery meters.
Alarm	
Traditional to	When this alarm is selected, there is excessive
Recovery Pressure	difference between the observed and
	theoretical values for recovery to traditional
Recovery Pressure Ratio (y2) Alarm	theoretical values for recovery to traditional pressure ratio.
Recovery Pressure	theoretical values for recovery to traditional pressure ratio. When this alarm is selected, there is excessive
Recovery Pressure Ratio (y2) Alarm	theoretical values for recovery to traditional pressure ratio. When this alarm is selected, there is excessive
Recovery Pressure Ratio (y2) Alarm Recovery to	theoretical values for recovery to traditional pressure ratio. When this alarm is selected, there is excessive
Recovery Pressure Ratio (y2) Alarm Recovery to Permanent Mass	theoretical values for recovery to traditional pressure ratio. When this alarm is selected, there is excessive difference between the mass flow rates derived
Recovery Pressure Ratio (y2) Alarm Recovery to Permanent Mass Flow Rate (x3) Alarm	theoretical values for recovery to traditional pressure ratio. When this alarm is selected, there is excessive difference between the mass flow rates derived from the recovery and the permanent meters.
Recovery Pressure Ratio (y2) Alarm Recovery to Permanent Mass Flow Rate (x3)	theoretical values for recovery to traditional pressure ratio. When this alarm is selected, there is excessive difference between the mass flow rates derived from the recovery and the permanent meters. When this alarm is selected, there is excessive
Recovery Pressure Ratio (y2) Alarm Recovery to Permanent Mass Flow Rate (x3) Alarm Recovery to	theoretical values for recovery to traditional pressure ratio. When this alarm is selected, there is excessive difference between the mass flow rates derived from the recovery and the permanent meters.

Field	Description
Dp Comparison (x4)	When this alarm is selected, there is excessive
Alarm	difference between the observed traditional Dp
	value and the sum of the recovery and
	permanent pressure values
Pattern Alarm	This read-only field displays a text message describing the results of the pattern matching algorithm.

2. Proceed to the *Section 3.2 – Configuration*.

3.2 Configuration

The Configuration tab provides most of the parameters needed to configure Prognosis FC.

😬 ROCLINK 800 - [DPMD Parameters - Remote Oprtns Cntrlr]	
Eile Edit View ROC Configure Gas Meters Liquid Meters Utilities Tools Window Help	_ & ×
D 🖆 🖬 & 타b 🖻 🗇 와 🍹 약! 약! 사 밴 🐝 K^ 밴 🎜 冬 🕑 🖬 🖺 🗳 년 💕 ? K?	
Point Number : 1 - Orifice 1	^
Meter Description Program Status DP Meter Diagnostic Tag Seconds Until Next Scheduled Diagnostic	0
🔲 Enable Diagnostics 👘 Run Diagnostic Command	_
Results Configuration Advanced Intermediate Detail	
Meter Type Drifice ▼ Recovery DP Source Normal/High Undefined Low DP Setpoint 0.0 Low Undefined Low Undefined High DP Setpoint 0.0 Permanent DP Source Normal/High Undefined Normal/High Undefined of Cd 1.0 of PLR 2.6 of Kr 2.0 of PRR 2.2	
of Kppl 3.0 of RPR 2.8 High DP Setpoint 0.0	
Diagnostic Scheduling Alarming Schedule type Scheduling Disabled Single, Combined Diagnostic Alarm Alarm Individual Diagnostics Alarm on Pattern Matching 	
Distance of PPL Tap Downstream 0.0 inch L/D 6.0 Obstruction Minor Loss Coefficient 0.0 Friction Factor 0.012 PLR Offset Factor 0.0 Suggested PLR Offset Factor 0.0	
Print Save As Auto Scan Digital Close	

Figure 3-4. Configuration tab

1. Review the values in the following fields:

Field	Description
Meter Type	 Selects the appropriate meter type. Click to select a valid option: Orifice Venturi Cone
Acceptable Variances [%]	These values serve as the alarm thresholds for the different diagnostic parameters. You can increase these values if nuisance alarms are occurring.
of Cd	Sets the acceptable variance (in percent) of the discharge coefficient for the traditional meter.
of Kr	Sets the acceptable variance (in percent) of the flow coefficient for the recovery meter.
of Kppl	Sets the acceptable variance (in percent) of the flow coefficient for the permanent meter.
of PLR	ratio of permanent to traditional pressure loss.
of PRR	Sets the acceptable variance (in percent) of the ratio of recovery to traditional pressure loss.
of RPR	Sets the acceptable variance (in percent) of the ratio of recovery to permanent pressure loss.
of traditional Dp	Sets the acceptable variance (in percent) of the traditional DP.
Diagnostic Scheduling	 This frame sets the diagnostic calculations for the meter are to be scheduled. If scheduled, select the Schedule Type. Click to select a valid option: Scheduling Disabled Scheduling in Days Scheduling in Hours Scheduling in Minutes Scheduling in Seconds
Schedule Type	Sets the time interval between scheduled runs o Prognosis FC calculations for the meter. The units of time for the interval are specified with the Diagnostic Scheduling parameter.
Distance to PPL Tap Downstream	Sets the distance from the restriction to the far downstream tap. If this number is less than the 6 diameters, it will be ignored. If the value is greater than 6 diameters, a correction value will be applied to the permanent pressure loss reading to compensate for excessive distance downstream
L/D	This read-only field displays the ratio of the far downstream tap distance to the diameter of the meter. Ideally, this value should be 6.0.

Field	Description
Obstruction Minor Loss Coefficient	This coefficient is used to compensate for pressure losses caused by obstructions in the meter tube located between the downstream tap and the far downstream tap. One example of such an obstruction would be a thermowell. Note: If a thermowell or other obstruction exists in the flow stream between the downstream tap and the far downstream tap.
Friction Factor	Sets the friction factor used to calculate additional pressure loss if far downstream tap is located more than 6 diameters downstream.
PLR Offset Factor	Can be used to "zero" the error produced by anomalies, such as wet gas, non-standard tap location, and other pressure losses within the meter
Suggested PLR Offset Factor	This read-only field displays the PLR offset factor calculated by the program which can be used to "zero" the Diagnostics for the meter
Recovery DP Source	Specifies where the value of the Recovery DP should be read and the conditions (if applicable) which will control switching between stacked DP sensors.
Normal/High	Click to designate input variable from which the DP should be read for non-stacked DP installations. For stacked DP installations, this location designates the parameter for the high DP instrument value.
Low DP Setpoint	Sets the value which provides the threshold for switching from the high DP instrument to the low DP instrument. This is for stacked DP installations.
Low	Click to designate input variable from which the Low DP should be read for stacked DP installations.
High DP Setpoint	Sets the value which provides the threshold for switching from the low DP instrument to the high DP instrument. This is for stacked DP installations.
Permanent DP Source	Specify where the value of the Permanent DP should be read and the conditions (if applicable) which will control switching between stacked DP sensors.
Normal/High	Click designate input variable from which the DP should be read for non-stacked DP installations. For stacked DP installations, this location designates the parameter for the high DP instrument value.
Low DP Setpoint	Sets the value which provides the threshold for switching from the high DP instrument to the low DP instrument. This is for stacked DP installations.

Field	Description	utura da bia turu - 121				
Low	 Click to designate input variable from which the Low DP should be read for stacked DP installations. Sets the value which provides the threshold for switching from the low DP instrument to the high DP instrument. This is for stacked DP installations. 					
High DP Setpoint						
Alarming	Specifies the type of alarms to be entered into the ROC800 Alarm log:					
	No Alarming	No alarms will be entered into the ROC800 alarm log.				
	Single,Combined Diagnostic Alarm	If any of the seven diagnostics are outside of acceptable ranges, an alarm is set. The alarm is not cleared until all of the diagnostics are within range.				
	Alarm Individual Diagnostics	Alarms are set and cleared individually for each of the seven diagnostics. Warning: This mode can create numerous alarms.				
	Alarm on Pattern Match	If the pattern match feature reveals a non- conforming pattern, ar alarm is set for that pattern. The alarm is cleared either when the pattern returns a conforming pattern or when a different non- conforming pattern is matched.				
Number of Diagnostics to Average	When Prognosis FC calculations are the program can perform multiple con calculations rapidly and average the r Click I to specify the number of calc repetitions to perform and average at scheduled interval.					
	Note: Improper configuration of this parameter might result in unexpected or unwanted behavior. For example, setting the scheduling type to seconds and setting the schedule to 5 but setting the number of diagnostics to average to 7 will result in continuous execution of the Prognosis FC at 1-second intervals. In some applications, this may place an undesirable load on the ROC800's main processor.					

- **2.** Enable the **Run Diagnostic Command** check box and click **Apply** to save the changes.
- **3.** Observe the **Program Status Description** and Code for indications of either success of operation or configuration problems.
- 4. Make corrections as necessary.
- **5.** Proceed to *Section 3.3 Advanced*.

3.3 Advanced

Once you have successfully configured the DP Meter Diagnostics program for a meter run, you can make adjustments to the Advanced configuration parameters if so you desired.

😁 ROCLINK 800 - [DPMD Parameters - Remote Oprtns Cntrlr]	
Eile Edit View ROC Configure Gas Meters Liquid Meters Utilities Tools Window Help	_ & ×
D 😂 🖬 % 🖻 🛍 🎒 🕮 🍹 🍳 🎕 M M 🐜 M M 🛱 🤻 🕑 🗳 🎽 🔛 💕 🖳 💕 ? 😡	
Point Number : 1 - Drifice 1	<u> </u>
Meter Description Program Status DP Meter Diagnostic Tag Seconds Until Next Scheduled Diagnostic	0
🔽 Enable Diagnostics 🕅 Run Diagnostic Command	-
Results Configuration Advanced Intermediate Detail	
Cd Calculation Expected/Calibrated PLR Calculation Method Cd from ISO 5167-2	
Kr Calculation Expected/Calibrated PRR Calculation Method Orifice - Cd from ISO 5167-2 Method	
Kppl Calculation Expected/Calibrated RPR Calculation Method Orifice - Cd from ISO 5167-2 Method RPR from PLR and theoretical Image: Colored from PLR and theoretical Image: Colored from PLR and theoretical	
Diagnostic Calculation Cutoff Thresholds Low Traditional Dp Cutoff 2500.0 Pa Low Recovery Dp Cutoff 1250.0 Pa Low Permanent Dp Cutoff 1250.0 Pa	
Print Save As Auto Scan Dupdate Close	<u>! Apply</u>
ON-LII	NE 5:55 PM

1. Review the following fields:

Field	Description
Cd Calculation Method	The coefficient of discharge for the traditional flow rate calculation can be calculated either
Method	from ISO 5167 or from a curve fit. If the meter
	has been calibrated to derive a more precise
	definition of discharge coefficient vs Reynolds
	number, a curve fit of that calibration data can
	be entered here.
Kr Calculation	The flow coefficient for the recovery flow rate
Method	calculation can be calculated either from ISO
	5167 or from a curve fit. If the meter has been
	calibrated to derive a more precise definition of
	flow coefficient vs Reynolds number, a
	polynomial curve fit of that calibration data can
	be entered here.
Kppl Calculation	The flow coefficient for the permanent pressure
Method	loss rate calculation can be calculated either
	from ISO 5167 or from a curve fit. If the meter
	has been calibrated to derive a more precise
	definition of flow coefficient vs Reynolds
	number, a curve fit of that calibration data can
	be entered here.
Expected/Calibrated PLR Calculation	The ratio of traditional DP to permanent
PLR Calculation	pressure loss DP can be calculated either from
	a published equation or from a curve fit. If the meter has been calibrated to derive a more
	precise definition of pressure loss ratio vs
	Reynolds number, a curve fit of that calibration
	data can be entered here.
Expected/Calibrated	The ratio of recovery DP to permanent
PRR Calculation	pressure loss DP can be calculated either from
	a published equation or from a curve fit. If the
	meter has been calibrated to derive a more
	precise definition of pressure loss ratio vs
	Reynolds number, a curve fit of that calibration
	data can be entered here.
Expected/Calibrated	The ratio of traditional DP to recovery pressure
RPR Calculation	loss DP can be calculated either from a
	published equation or from a curve fit. If the
	meter has been calibrated to derive a more
	precise definition of pressure loss ratio vs
	Reynolds number, a curve fit of that calibration
Diagnostic	data can be entered here.
Diagnostic	data can be entered here. Specifies the low DP limits for the diagnostic
Calculations Cutoff	data can be entered here.
Calculations Cutoff Thresholds	data can be entered here. Specifies the low DP limits for the diagnostic calculations:
Calculations Cutoff Thresholds Low Traditional	data can be entered here. Specifies the low DP limits for the diagnostic calculations: Sets the threshold for diagnostic calculations
Calculations Cutoff Thresholds	data can be entered here. Specifies the low DP limits for the diagnostic calculations: Sets the threshold for diagnostic calculations based on the traditional DP value. When the
Calculations Cutoff Thresholds Low Traditional	data can be entered here. Specifies the low DP limits for the diagnostic calculations: Sets the threshold for diagnostic calculations based on the traditional DP value. When the traditional DP value falls below this threshold, th
Calculations Cutoff Thresholds Low Traditional	data can be entered here. Specifies the low DP limits for the diagnostic calculations: Sets the threshold for diagnostic calculations based on the traditional DP value. When the

Field	Description
Low Recovery DP	Sets the threshold for diagnostic calculations
cutoff	based on the recovery DP value. When the
	recovery DP value falls below this threshold, the
	diagnostic calculations will not be executed. This
	feature can be used to prevent extraneous
	alarms at very low flow rates.
Low Permanent	Sets the threshold for diagnostic calculations
DP cutoff	based on the permanent DP value. When the
	permanent DP value falls below this threshold,
	the diagnostic calculations will not be executed.
	This feature can be used to prevent extraneous
	alarms at very low flow rates.

- **2.** Click **Apply** to save the changes.
- **3.** Proceed to Section 3.4 Intermediate.

3.4 Intermediate

The Intermediate tab provides information about intermediate values calculated during the Prognosis FC calculations.

Note:	The Prognosis FC calculations are performed in metric units –
	regardless of the units of measure configured in the ROC800.

😬 ROCLINK 800 - [DPMD Parameters - Remote Oprtns Cntrlr]		
Eile Edit View ROC Configure Gas Meters Liqui	d Meters <u>U</u> tilities <u>T</u> ools <u>W</u> indow <u>H</u> elp	_ & ×
D 📽 🖬 % 🖻 💼 🚭 🕼 🍡 🔍 🔍 M [H	🐜 🙌 빤 🛱 🤻 🕑 🖀 🖺 📑 넫 📝 ? 🦎	
Point Number : 1 - Orifice 1 🗨		<u> </u>
Meter Description	Program Status	0
DP Meter Diagnostic Tag	Seconds Until Next Scheduled Diagnostic 0	Ju
	, <u>, , , , , , , , , , , , , , , , , , </u>	
🥅 Enable Diagnostic	s 🦳 Run Diagnostic Command	-
Results Configuration Advanced Intermed	iate Detail	
	-	
Restriction Diameter (d) 0.0	m Meter Mtr Coeff Mtr Coeff PrmZ	
Inlet Diameter (D) 0.0	m Coefficient Prime Kr', KprZ, KpplZ Kr, Kppl Kppl'	
Beta ratio 0.0 Meter Inlet Area 0.0	m^2 Recovery 0.0 0.0 0.0	
Meter Throat Area 0.0	m ² Permanent 0.0 0.0 0.0	
Velocity of Approach Factor (E)		
Isentropic Exponent (kappa)	Traditional Mtr Mass Flow Rate 0.0 Kg/sec	
Inlet Density (rho)	Kg/m^3 Recovery Mtr Mass Flow Rate 0.0 Kg/sec	
Viscosity (mu) 0.0	Pa-sec Permanent Mtr Mass Flow Rate 0.0 Kg/sec	
Tradini Expansion Fetr (epsilon) 0.0	Trad/PPL Rate Actual Error (psi) 0.0 %	
Extra L/D 0.0	Trad/Rec Rate Actual Error (lambda) 0.0 %	
Kloss 0.0	Rec/PPL Rate Actual Error (chi) 0.0 %	
Head loss (hl) 0.0 Upstream Static Pressure 0.0	Pa Trad/PPL Rate Acceptable Error (phi) 0.0 % Pa Trad/Rec Rate Acceptable Error (nu) 0.0 %	
Traditional Dp Read 0.0		
Recovery Dp Read 0.0	P.	
Permanenti Dp Read 0.0	Actual Calibration Calib Calib2	
Reynolds Number (Re)		
Discharge Coefficient (Cd)	PRR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
	,,	
Inferred Traditional DP 0.0	PBB Error Difference lo o	
Traditional Dp Error 0.0	RPR Error Difference 0.0 %	
	10.0	
	Print Save As Auto Scan 🗗 Update Close	! Apply
1		•
I	ON-LI	NE 5:55 PM

Figure 3-6. Intermediate tab

1. Review the following fields:

Field	Description
Restriction	This read-only field displays the temperature-
Diameter (d)	corrected meter restriction diameter.
Inlet Diameter (D)	This read-only field displays the temperature-
	corrected meter inlet diameter.
Beta	This read-only field displays the calculated
	Beta ratio
Meter Inlet Area	This read-only field displays the cross-sectiona
meter milet Areu	area of the meter inlet.
Meter Throat Area	This read-only field displays the cross-sectiona
	area of the meter restriction.
Valaaity of	This read-only field displays the dimensionless
Velocity of	
Approach factor	velocity of approach factor for the meter.
(E) Isontronio	This wood only field displays the dimensionly of
Isentropic	This read-only field displays the dimensionless
Exponent (kappa)	isentropic exponent for the flowing fluid.
Inlet Density (rho)	This read-only field displays the density of the
	flowing fluid at the meter inlet.
Viscosity (mu)	This read-only field displays the dynamic
	viscosity of the flowing fluid.
Tradinl Expansion	This read-only field displays the expansion
Factor (epsilon)	factor of the traditional meter.
Extra L/D	This read-only field displays the additional
	dimensionless pipe diameters between the idea
	and actual location of the far downstream tap.
Kloss	This read-only field displays the total amount of
	equivalent dimensionless pipe diameters
	(including Extra L/D and any obstructions) for
	correcting the far downstream pressure reading
Head loss (hl)	This read-only field displays the amount by
(,	which the far downstream Dp reading will be
	corrected to account for additional losses.
Upstream Static	This read-only field displays the upstream station
Pressure	pressure.
Traditional Dp	This read-only field displays the traditional Dp
Read	value read from the configured input.
Recovery Dp Read	This read-only field displays the recovery Dp
Necovery ph Nedu	value read from the configured input.
Bormonont Da	This read-only field displays the permanent Dp
Permanent Dp Read	
	value read from the configured input.
Reynolds Number	This read-only field displays the calculated
(Re) Diacharra	Reynold number.
Discharge	This read-only field displays the coefficient of
Coefficient (Cd)	discharge for the traditional meter.
Inferred Traditional	This read-only field displays the sum of the
Dp	Recovery DP Read and the Permanent Dp
	Read.
Traditional DP	This read-only field displays the difference [%]
Error %	between the Traditional Dp Read and the
	Inferred Traditional Dp.
	This read-only field displays the recovery meter
Recovery	,,
Recovery	
-	coefficient and corrections made to it.
Meter Coefficient	coefficient and corrections made to it. This read-only field displays the meter
Recovery Meter Coefficient Kr, Kppl	coefficient and corrections made to it.

Field Meter Coefficient	Description This read-only field displays the meter
Kr', Kppl'	coefficient Kr corrected for Head Loss (hl).
Meter Coefficient	This read-only field displays the meter
Kr'Z, Kppl'Z	coefficient Kr corrected for Head Loss (hl) and
κι Ζ, κρρι Ζ	PLR Offset Factor defined on the
	Configuration tab.
Permanent	This read-only field displays the permanent
rennanent	meter coefficient and corrections made to it
Meter Coefficient	This read-only field displays the meter
Kr, Kppl	coefficient Kppl calculated (vs Reynolds
	number) using the method selected on the Advanced tab.
Motor Coofficient	
Meter Coefficient	This read-only field displays the meter
Kr', Kppl'	coefficient Kppl corrected for Head Loss (hl) .
Meter Coefficient	This read-only field displays the meter
Kr'Z, Kppl'Z	coefficient Kppl corrected for Head Loss (hl)
	and PLR Offset Factor defined on the
Teadition of Marca	Configuration tab.
Traditional Mass	This read-only field displays the mass flow rate
Flow Rate	as calculated from the traditional meter.
Recovery Mass	This read-only field displays the mass flow rate
Flow Rate	as calculated from the recovery meter.
Permanent Mass	This read-only field displays the mass flow rate
Flow Rate	[Kg/sec] as calculated from the permanent
	meter.
Trad/PPL Rate	This read-only field displays the actual error
Actual Error (psi)	between the traditional and permanent meter
	flow rates.
Trad/Rec Rate	This read-only field displays the actual error
Actual Error	between the traditional and recovery meter flow
(lambda)	rates.
Rec/PPL Rate	This read-only field displays the actual error [%]
Actual Error (chi)	between the recovery and permanent meter
	flow rates.
Trad/PPL Rate	This read-only field displays the acceptable
Aceptable Error	error between the traditional and permanent
(phi)	meter flow rates.
Trad/Rec Rate	This read-only field displays the acceptable
Aceptable Error	error between the traditional and recovery meter
(nu)	flow rates.
Rec/PPL Rate	This read-only field displays the acceptable
Acceptable Error	error [%] between the recovery and permanent
(xi)	meter flow rates.
PLR	This read-only field displays the uncorrected
	and corrected pressure loss ratio information for
	the traditional to permanent pressure loss ratio.
Actual	This read-only field displays the actual
	pressure ratio.
Calibration	This read-only field displays the theoretical
	(uncorrected) pressure ratio.
Calib'	This read-only field displays the theoretical
	pressure loss ratio corrected for meter
	coefficient Kr corrected for Head Loss (hl).
Calib'Z	This read-only field displays the theoretical
Calib'Z	This read-only field displays the theoretical pressure loss ratio corrected for Head Loss (hl)

Field	Description
PRR	This read-only field displays the uncorrected
	and corrected pressure loss ratio information for
	the traditional to recovery pressure loss ratio.
Actua	I This read-only field displays the actual
	pressure ratio.
Calibratio	This read-only field displays the theoretical
	(uncorrected) pressure ratio.
Calib	' Displays the theoretical pressure loss ratio
	corrected for meter coefficient Kr corrected for
	Head Loss (hl).
Calib'	
	corrected for Head Loss (hl) and PLR Offset
	Factor.
RPR	This read-only field displays the uncorrected
	and corrected pressure loss ratio information for
	the recovery to permanent pressure loss ratio.
Actua	I This read-only field displays the actual
	pressure ratio.
Calib'	,,,,,,,
	pressure loss ratio corrected for Head Loss (hl)
	and PLR Offset Factor. This will be identical to
	the Actual value for RPR
PLR Error	This read-only field displays the calculated
Difference	difference between the actual and the corrected
	theoretical PLR
PRR Error	This read-only field displays the calculated
Difference	difference between the actual and the corrected
	theoretical PRR.
RPR Error	This read-only field displays the calculated
Difference	difference between the actual and the corrected
	theoretical RPR.

2. Proceed to Section 3.5 – Detail.

3.5 Detail

The Detail tab provides more detailed information that the summary tab. It also contains a limited amount of diagnostic information:

😁 ROCLINK 800											- 6 .
Eile Edit	<u>View ROC C</u>	onfigure G		Liquid Meters			<u>/</u> indow <u>H</u> elp				_ 8 ×
🗅 🗃 🖪 🛛 🐰	Pa 🖪 🎒	🔹 🍡 🤇	$\mathbb{Q}^1 \mathbb{Q}^2 \mid \mathcal{N}$	14 🐝 h	ግ 🖓	🌂 🕑 🖡		년 📑 1	? \ ?		
Point Number : 1	Orifice 1	•									-
	Meter De DP Meter Diagno	· _			Secon		Program Scheduled Diag	gnostic 0			0
	Results Confi		Enable Diag		etail	Г	Run Diagnos	tic Command	I		-, -
		Diagnostic Atl gnostic Comp				I	Alarm Byte Va Pattern Match C				
		1	2	3	4	5	6	7	8	9	
	Raw x1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Raw y1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Raw x2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Raw y2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Raw x3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Raw y3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Raw x4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
				1 - traditio 2 - recov 3 - permane DP	Diag onal 0.0 ery 0.0	inostic x	Pressure Ratio Diagnostic y 0.0 0.0				
					<u>P</u>	rint <u>S</u>	ave As Au	t <u>o</u> Scan [화 <u>U</u> pdate	<u>C</u> lose	
•											•
										ON-LINE	5:55 PM

Figure 3-7. Detail tab

1. Review the following fields:

Field	Description
Diagnostic Attempt Counter	This read-only field displays each time a diagnostic run begins; this counter is
obdinter	increased.
Diagnostic	This read-only field displays each time a
Completion	diagnostic run reaches successful completion,
Counter	this counter is incremented. If the Diagnostic Attempt Counter is increasing faster than the Diagnostic Completion Counter , an error condition is indicated.

Field	Description
Alarm Byte Value	This read-only field displays the numeric
	representation of currently-active alarms is
	displayed in this field. This is a bit-mapped 8-bit
	integer:
	 Bit 0 – Traditional to Permanent Mass Flow
	Rate Alarm
	 Bit 1 – Traditional to Permanent Pressure
	Ratio Alarm
	 Bit 2 – Traditional to Recovery Mass Flow
	Rate Alarm
	 Bit 3 – Traditional to Recovery Pressure Ratio
	Alarm
	 Bit 4 – Recovery to Permanent Mass Flow
	Rate Alarm
	 Bit 5 – Recovery to Permanent Pressure Ratio
	Alarm
	 Bit 6 – Dp Comparison Alarm
	 Bit 7 – Not used
	Note: This field is a numeric representation of
	the Alarms section displayed on the
	Results tab
Pattern Match	This read-only field displays the numeric version
Code	of the results of pattern matching. See Chapter
	 Reference of this document for a listing of the
-	coded values.
Raw x1, y1, x2, y2,	This read-only field displays the individual
x3, y3, x4	diagnostic values from each repetition. All of the
	unused repetition columns are filled with zeros
	The Prognosis FC functions can be configured to
	run from 1 to 9 repetitions of calculations for
	each commanded execution. The results of this
	set of runs is averaged.
1 – traditional	This read-only field displays the averaged
	values of the individual parameters.
Flow Diagnostic	This read-only field displays the flow diagnostic
X	(x1) for the traditional meter.
Pressure Ratio	This read-only field displays the pressure ratio
Diagnostic y	diagnostic (y1) for the traditional meter.
2 – recovery	This read-only field displays the averaged
Flave Dia constant	values of the individual parameters.
Flow Diagnostic	This read-only field displays the flow diagnostic
X	(x2) for the recovery meter.
Pressure Ratio	This read-only field displays the pressure ratio
Diagnostic y	diagnostic (y2) for the recovery meter.
3 - permanent	This read-only field displays the averaged
	values of the individual parameters.
	This read-only field displays the flow diagnostic
Flow Diagnostic	
x	(x3) for the permanent meter.
x Pressure Ratio	This read-only field displays the pressure ratio
x Pressure Ratio Diagnostic y	This read-only field displays the pressure ratio diagnostic (y3) for the permanent meter.
x Pressure Ratio	This read-only field displays the pressure ratio

2. Proceed to Section 3.6 – Saving the Configuration.

3.6 Saving the Configuration

Whenever you modify or change the configuration, it is a good practice to save the final configuration to memory. To save the configuration:

Select **ROC** > **Flags**. The Flags screen displays:

Flags	
General Advanced	
Restart	-Flash Memory
<u>W</u> arm Start	Save Configuration
<u>C</u> old Start	Clear
Cold Start & Clear Alarms/Events	Status :
Cold Start & Clear Displays	
Cold Start & Clear F <u>S</u> Ts	
Cold Start & Clear <u>H</u> istory	
Cold Start & Clear ALL	
Dupdate	✓ OK XCancel ! Apply

Figure 3-8. Flags

1. Click Save Configuration. A verification message displays:

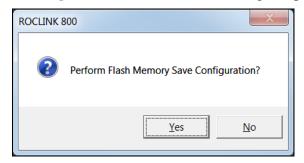


Figure 3-9. Save Verification

2. Click **Yes.** When the save process completes, a confirmation message displays:

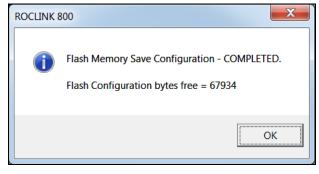


Figure 3-10. Confirmation

Note: Depending on the size and complexity of the user program, this process may take several minutes. When the process ends, the Status field on the Flags screen displays *Completed*.

Flags	? X
General Advanced	
Restart	Flash Memory
<u>W</u> arm Start	Save Configuration
<u>C</u> old Start	Clear
Cold Start & Clear Alarms/Events	Status : Completed
Cold Start & Clear Displa <u>v</u> s	
Cold Start & Clear FSTs	
Cold Start & Clear <u>H</u> istory	
Cold Start & Clear A <u>L</u> L	
Dupdate	✓ OK XCancel Apply

Figure 3-11. Flags, Status - Completed

- **3.** Click **Update** on the Flags screen. This completes the process of saving your new configuration.
 - **Note:** For archive purposes, you should also save this configuration to your PC's hard drive or a removable media (such as a flash drive) using the **File** > **Save Configuration** option on the ROCLINK 800 menu bar.

Chapter 4 – Reference

This section provides information on the user-defined point types the DP Meter Diagnostics program uses:

Point Type 220: DP Meter Diagnostics Parameters

The following topics are discussed in this section:

- Program Status Codes and Messages
- Pattern Match Codes and Messages
- Zeroing the meter for Prognosis FC

4.1 Point Type 220: DP – Prognosis FC Parameters

Point type 220 contains the parameters for the configuration and the output parameters of the DP – Prognosis FC user program. The program supports up to 12 logicals of point type 220.

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
0	Тад	R/W	User	AC	10	$0x20 \rightarrow 0x7E$ for each ASCII character	22.33	1.00	An alternate text descriptor
1	Cd Polynomial A	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating Cd of Cd Method is anything other than "ISO 5167 equation"
2	Cd Polynomial B	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating Cd of Cd Method is anything other than "ISO 5167 equation"
3	Cd Polynomial C	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating Cd of Cd Method is anything other than "ISO 5167 equation"
4	Cd Polynomial D	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating Cd of Cd Method is anything other than "ISO 5167 equation"
5	Kr Polynomial A	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	If Kr Method = "derive Kr from curve-fit polynomial" then Kr is calculated using a Cd computed = KrA+(KrB*Re)+(KrC*(Re ^2))+(KrD*(Re ^3))
6	Kr Polynomial B	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	If Kr Method = "derive Kr from curve-fit polynomial" then Kr is calculated using a Cd computed = KrA+(KrB*Re)+(KrC*(Re ^2))+(KrD*(Re ^3))
7	Kr Polynomial C	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	If Kr Method = "derive Kr from curve-fit polynomial" then Kr is calculated using a Cd computed = KrA+(KrB*Re)+(KrC*(Re ^2))+(KrD*(Re ^3))
8	Kr Polynomial D	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	If Kr Method = "derive Kr from curve-fit polynomial" then Kr is calculated using a Cd computed = KrA+(KrB*Re)+(KrC*(Re ^2))+(KrD*(Re ^3))

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
9	Kppl Polynomial A	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	If Kppl Method = "derive Kppl from curve-fit polynomial" then Kppl is calculated using a Cd computed = KpplA+(KpplB*Re)+(KpplC*(Re ^2))+(KpplD*(Re ^3))
10	Kppl Polynomial B	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	If Kppl Method = "derive Kppl from curve-fit polynomial" then Kppl is calculated using a Cd computed = KpplA+(KpplB*Re)+(KpplC*(Re ^2))+(KpplD*(Re ^3))
11	Kppl Polynomial C	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	If Kppl Method = "derive Kppl from curve-fit polynomial" then Kppl is calculated using a Cd computed = KpplA+(KpplB*Re)+(KpplC*(Re ^2))+(KpplD*(Re ^3))
12	Kppl Polynomial D	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	If Kppl Method = "derive Kppl from curve-fit polynomial" then Kppl is calculated using a Cd computed = KpplA+(KpplB*Re)+(KpplC*(Re ^2))+(KpplD*(Re ^3))
13	PLR Polynomial A	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating PLR if PLR Method is anything other than "ISO 5167 equation"
14	PLR Polynomial B	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating PLR if PLR Method is anything other than "ISO 5167 equation"
15	PLR Polynomial C	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating PLR if PLR Method is anything other than "ISO 5167 equation"
16	PLR Polynomial D	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating PLR if PLR Method is anything other than "ISO 5167 equation"
17	PRR Polynomial A	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating PRR if PRR Method is anything other than "calculate from PLR and theoretical relationships"

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
18	PRR Polynomial B	R/W	Üser	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating PRR if PRR Method is anything other than "calculate from PLR and theoretical relationships"
19	PRR Polynomial C	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating PRR if PRR Method is anything other than "calculate from PLR and theoretical relationships"
20	PRR Polynomial D	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating PRR if PRR Method is anything other than "calculate from PLR and theoretical relationships"
21	RPR Polynomial A	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating RPR if RPR Method is anything other than "calculate from PLR and theoretical relationships"
22	RPR Polynomial B	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating RPR if RPR Method is anything other than "calculate from PLR and theoretical relationships"
23	RPR Polynomial C	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating RPR if RPR Method is anything other than "calculate from PLR and theoretical relationships"
24	RPR Polynomial D	R/W	User	FL	4	Any IEEE floating point value	0.0	1.00	Coefficient used for calculating RPR if RPR Method is anything other than "calculate from PLR and theoretical relationships"
25	PPL Tap Distance	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Distance between the restriction (orifice plate) and the PPL pressure tap. Units of measure are same as used for orifice and pipe diameter.
26	Obstruction Minor Loss Coefficient	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Sum of minor loss coefficients for any obstructions between the flow restriction (orifice plate) and the PPL pressure tap
27	Friction Factor	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.012	1.00	Friction factor for calculating pressure loss in the meter body

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
28	PLR Offset Factor	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Factor for offsetting the PLR of the meter
29	Acceptable Variance of Cd	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	1.0	1.00	Maximum acceptable variance percentage of discharge coefficient
30	Acceptable Variance of Kr	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	2.0	1.00	Maximum acceptable variance percentage of recovery meter coefficient
31	Acceptable Variance of Kppl	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	3.0	1.00	Maximum acceptable variance percentage of permanent pressure loss meter coefficient
32	Acceptable Variance of PLR	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	2.6	1.00	Maximum acceptable variance permanent pressure loss ratio
33	Acceptable Variance of PRR	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	2.2	1.00	Maximum acceptable variance recovery pressure loss ratio
34	Acceptable Variance of RPR	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	2.8	1.00	Maximum acceptable variance of ratio of pressure recovery pressure to permanent pressur loss
35	Acceptable Variance of Traditional Dp	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	1.0	1.00	Maximum acceptable variance of the measured traditional Dp from the inferred traditional Dp
36	Cd Text Polynomial A	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Cd polynomial coefficient A
37	Cd Text Polynomial B	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Cd polynomial coefficient B
38	Cd Text Polynomial C	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Cd polynomial coefficient C
39	Cd Text Polynomial D	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Cd polynomial coefficient D
40	Kr Text Polynomial A	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Kr polynomial coefficient A

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
41	Kr Text Polynomial B	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Kr polynomial coefficient B
42	Kr Text Polynomial C	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Kr polynomial coefficient C
43	Kr Text Polynomial D	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Kr polynomial coefficient D
44	Kppl Text Polynomial A	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Kppl polynomial coefficient A
45	Kppl Text Polynomial B	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Kppl polynomial coefficient B
46	Kppl Text Polynomial C	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Kppl polynomial coefficient C
47	Kppl Text Polynomial D	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the Kppl polynomial coefficient D
48	PLR Text Polynomial A	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the PLR polynomial coefficient A
49	PLR Text Polynomial B	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the PLR polynomial coefficient B
50	PLR Text Polynomial C	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the PLR polynomial coefficient C
51	PLR Text Polynomial D	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the PLR polynomial coefficient D
52	PRR Text Polynomial A	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the PRR polynomial coefficient A
53	PRR Text Polynomial B	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the PRR polynomial coefficient B

Parm #	rpe 220: DPMD Configuration Para Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
54	PRR Text Polynomial C	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the PRR polynomial coefficient C
55	PRR Text Polynomial D	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the PRR polynomial coefficient D
56	RPR Text Polynomial A	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the RPR polynomial coefficient A
57	RPR Text Polynomial B	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the RPR polynomial coefficient B
58	RPR Text Polynomial C	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the RPR polynomial coefficient C
59	RPR Text Polynomial D	RW	User	AC	20	Any valid numerical ASCII characters	"0.0"	1.00	Text version of the RPR polynomial coefficient D
60	Recovery Low DP Setpoint	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	If Regular Dp source is being used and Dp falls below this setpoint value, the system will switch to using the Low DP source.
61	Recovery High Dp Setpoint	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	If low DP source is being used and Dp rises above this value, the system will switch to use the Regular Dp source
62	Permanent Low DP Setpoint	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	If Regular Dp source is being used and Dp falls below this setpoint value, the system will switch to using the Low DP source.
63	Permanent High Dp Setpoint	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	If low DP source is being used and Dp rises above this value, the system will switch to use the Regular Dp source
64	Recovery Dp Source	R/W	User	TLP	3	Any valid TLP (assumed to be a floating point TLP)	0,0,0	1.00	Source of differential pressure signal measured from downstream tap to PPL tap.

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
65	Recovery Low Dp Source	R/W	User	TLP	3	Any valid TLP (assumed to be a floating point TLP)	0,0,0	1.00	Source of differential pressure signal measured from downstream tap to PPL tap to be used for "low" side of a stacked DP arrangement.
66	Permanent Dp Source	R/W	User	TLP	3	Any valid TLP (assumed to be a floating point TLP)	0,0,0	1.00	Source of differential pressure signal measured from upstream tap to PPL tap.
67	Permanent Low Dp Source	R/W	User	TLP	3	Any valid TLP (assumed to be a floating point TLP)	0,0,0	1.00	Source of differential pressure signal measured from upstream tap to PPL tap to be used for "low" side of a stacked DP arrangement.
68	Enable DPMD	R/W	User	UINT8	1	0-1	0	1.00	Valid values are: 0 = Disable DPMD for this meter 1 = Enable DPMD for this meter
69	Meter Type	R/W	User	UINT8	1	0-2	0	1.00	Valid values are: 0 = Orifice 1 = Venturi 2 = Cone

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
70	PLR Method	R/W	User	UINT8	1	0-8	1	1.00	Valid values are: 0 – Use ISO 5167-2 equation 7 for all Beta ratios 1 – Use f(Beta) equation disclosed by Stevens in 2012 for Beta ratios above 0.55
									2 – Direct polynomial curve-fit PLR = A + B*Re + C*Re^2 D*Re^3
									3 – Direct curve fit PLR = A + B*(e^(C*Re))
									4 – Direct curve fit PLR = A + B*(10^(C*Re))
									5 – Direct curve fit PLR = A + B*ln((C*Re))
									6 – Direct curve fit PLR = A + B*log((C*Re))
									7 – Direct curve fit PLR = A + B*(C^(D*Re))
									8 – Direct curve fit PLR = A + *((C*Re)^D)
									Note: Methods 0 and 1 are on valid for an Orifice Mete
71	Generate Events	R/W	User	UINT8	1	0-1	1	1.00	Valid values are: 0 – Generate events in the event log when meter diagnostic configuration parameters are modified 1 – Do not generate events
72	Generate Alarms	R/W	User	UINT8	1	0-3	3	1.00	Valid values are:
									 0 – Do not generate alarms 1 – Generate only a single, combined alarm for all diagnostics 2 – Generate alarms based or the second individual
									the seven individual diagnostics
									3 – Generate alarm based up pattern matching

Parm #		Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
73	Kr Method		R/W	User	UINT8	1	0-8	0	1.00	Valid values are:
										 0 – Derive Kr using Cd derived ISO 5167 equation 4
										1 – Derive Kr using Cd from polynomial curve-fit Cd = A + B*Re + C*Re^2 + D*Re^3
										2 – Direct polynomial curve-fit Kr = A + B*Re + C*Re^2 + D*Re^3
								3 – Direct curve fit Kr = A + B*(e^(C*Re))		
										4 – Direct curve fit Kr = A + B*(10^(C*Re))
										5 – Direct curve fit Kr = A + B*ln((C*Re))
										6 – Direct curve fit Kr = A + B*log((C*Re))
										7 – Direct curve fit Kr = A + B*(C^(D*Re))
										8 – Direct curve fit Kr = A + B *((C*Re)^D)
										Note: Methods 0 and 1 are only valid for an Orifice Meter

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
74	Kppl Method	R/W	User	UINT8	1	0-8	0	1.00	Valid values are:
									 0 – Derive Kppl using Cd derived ISO 5167 equation
									 Derive Kppl using Cd from polynomial curve-fit Cd = A B*Re + C*Re^2 + D*Re^3
									2 – Direct polynomial curve-fit Kppl = A + B*Re + C*Re^2 - D*Re^3
									3 – Direct curve fit Kppl = A + B*(e^(C*Re))
								4 – Direct curve fit Kppl = A + B*(10^(C*Re))	
									5 – Direct curve fit Kppl = A + B*ln((C*Re))
									6 – Direct curve fit Kppl = A + B*log((C*Re))
									7 – Direct curve fit Kppl = A + B*(C^(D*Re))
									8 – Direct curve fit Kppl = A + B *((C*Re)^D)
									Note: Methods 0 and 1 are on valid for an Orifice Mete
75	Run Command	R/W	User	UINT8	1	0-1	0	1.00	Set this parameter to 1 to initiate a diagnostic. The system will set the value to zer at the end of the diagnostic.

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
76	Scheduling Enabled	R/W	User	UINT8	1	0-4	0	1.00	Valid values are:
									0 = Scheduling of diagnostic is disabled
									 1 = The program will schedule a diagnostic using the specified number as an interval in minutes.
									2 = The program will schedule a diagnostic using the specified number as an interval in hours.
									3 = The program will schedule a diagnostic using the specified number as an interval in days.
									4 = The program will schedule a diagnostic using the specified number as an interval in seconds.
77	Schedule Interval	R/W	User	UINT8	1	1-255	1	1.00	Interval to use in scheduling diagnostics (see "Enable Scheduling")
78	Number to Average	R/W	User	UINT8	1	1-9	4	1.00	Number of consecutive diagnostics to run and average for result values

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
79	Cd Method	R/W	User	U8	1	0-7	1	1.00	Method for calculating Cd:
									 0 – ISO 5167 equation 1 – Direct polynomial curve-fit Cd = A + B*Re + C*Re^2 + D*Re^3
									2 – Direct curve fit Cd = A + B*(e^(C*Re))
									3 – Direct curve fit Cd = A + B*(10^(C*Re))
									4 – Direct curve fit Cd = A + B*ln((C*Re))
									5 – Direct curve fit Cd = A + B*log((C*Re))
									6 – Direct curve fit Cd = A + B*(C^(D*Re))
									7 – Direct curve fit Cd = A + B *((C*Re)^D)
									Note: Method 0 is only valid for an Orifice Meter.
80	PRR Method	R/W	User	UINT8	1	0-7	1	1.00	Valid values are:
									 0 – Calculate from PLR and theoretical relationships
									1 – Direct polynomial curve-fit PRR = A + B*Re + C*Re^2 D*Re^3
									2 – Direct curve fit PRR = A + B*(e^(C*Re))
									3 – Direct curve fit PRR = A + B*(10^(C*Re))
									4 – Direct curve fit PRR = A + B*ln((C*Re))
									5 – Direct curve fit
									PRR = A + B*log((C*Re))
									6 – direct curve fit
									$PRR = A + B^{*}(C^{(D*Re)})$
									7 – direct curve fit
									PRR = A + B *((C*Re)^D)

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
81	RPR Method	R/W	User	UINT8	1	0-7	1	1.00	Valid values are:
									 0 – Calculate from PLR and theoretical relationships
									1 – Direct polynomial curve-fit RPR = A + B*Re + C*Re^2 + D*Re^3
									2 – Direct curve fit RPR = A + B*(e^(C*Re))
									3 – Direct curve fit RPR = A + B*(10^(C*Re))
									4 – Direct curve fit RPR = A + B*ln((C*Re))
									5 – Direct curve fit RPR = A + B*log((C*Re))
									6 – Direct curve fit RPR = A + B*(C^(D*Re))
									7 – Direct curve fit RPR = A + B *((C*Re)^D)
82	Pattern Alarm Text	RO	System	AC	30	$0x20 \rightarrow 0x7E$ for each ASCII character	"No Pattern Match"	1.00	Text description related to the pattern match
83	Program Status Description	RO	System	AC	20	0x20 → 0x7E for each ASCII character	66.73	1.00	Text Description of the Program's status
84	Last Diagnostic Completed Datetime Text	RO	System	AC	20	0x20 → 0x7E for each ASCII character	<i>u</i> 33	1.00	Text representation of the last diagnostic completion timestamp. Format is MM/DD/YYYY HH:NN:SS.
85	Traditional to PPL Rate Error Percent Limit (phi)	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Intermediate value used to Normalize output data.
86	Traditional to Recovery Rate Error Percent Limit (nu)	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Intermediate value used to Normalize output data.
87	Recovery to PPL Rate Error Percent Limit (xi)	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Intermediate value used to Normalize output data.

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
88	Traditional to PPL Mass Flow Difference Percent (psi)	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Intermediate value expressing difference between mass flow rates of the two meters in percent
89	Traditional to Recovery Mass Flow Difference Percent (lambda)	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Intermediate value expressing difference between mass flow rates of the two meters in percent
90	Recovery to PPL Mass Flow Difference Percent (chi)	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Intermediate value expressing difference between mass flow rates of the two meters in percent
91	Upstream Static Pressure	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Upstream pressure from the meter (ex: 114, #, 17) in absolute pressure but converted to Pa as necessary
92	Isentropic Exponent	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Also known as ratio of specific heats. Copied from (113, #,19)
93	Temperature Corrected Beta Ratio	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Ratio of restriction diameter to meter body diameter. Uses temperature corrected values. Copied from (114, #, 14)
94	Temperature Corrected Restriction Diameter	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Temperature corrected restriction (orifice bore) diameter (114, #, 8) converted to meters
95	Temperature Corrected Inlet Diameter	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Temperature corrected meter body diameter (114, #, 13) converted to meters
96	Inlet Density	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Flowing gas density at inlet conditions converted to Kg/M3as necessary
97	Viscosity	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Flowing gas (dynamic) viscosity converted to Pa-sec as necessary
98	Meter Inlet Area	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Temperature corrected cross- sectional area of the meter inlet in M2

System Parm Data **Description of functionality** Name or User Length Default Version Access Range # Type and meaning of values Update Velocity of Approach Factor FL 99 RO 4 Any positive, non-0.0 1.00 Copied from (114, #, 6) System zero IEEE floating point value Meter Throat Area RO FL Any positive, non-0.0 1.00 Temperature corrected cross-100 System 4 zero IEEE floating sectional area of the meter point value restriction in M2 101 Extra L over D RO FL 4 Any positive, non-0.0 1.00 Measure of non-standard System zero IEEE floating distance between 6D and actual point value location of the PPL tap Traditional Dp Read RO FL 4 Any positive, non-0.0 Copy of (113, #, 26) converted 102 System 1.00 zero IEEE floating to Pa point value Value gained from the Recovery 103 Recovery Dp Read RO FL 4 0.0 1.00 System Any positive, nonzero IEEE floating Dp Source TLP and converted point value to Pa. The conversion assumes that the Recovery Dp value is in the same units of measure as the Traditional Dp. 104 Permanent Dp Read RO Svstem FL 4 Any positive, non-0.0 1.00 Value gained from the zero IEEE floating Permanent Dp Source TLP and converted to Pa. The point value conversion assumes that the Permanent Dp value is in the same units of measure as the Traditional Dp. 105 Traditional Mass Flow Rate RO FL 4 Any positive, non-0.0 1.00 Mass flow rate calculated using System zero IEEE floating the traditional meter [Kg/sec] point value **Recovery Mass Flow Rate** RO FL 4 0.0 1.00 Mass flow rate calculated using 106 System Any positive, nonzero IEEE floating the recovery meter [Kg/sec] point value PPL Mass Flow Rate FL Mass flow rate calculated using 107 RO System 4 Any positive, non-0.0 1.00 zero IEEE floating the permanent pressure loss point value meter [Kg/sec] Actual PLR FL 0.0 Ratio of measured Permanent 108 RO System 4 Any positive, non-1.00 zero IEEE floating Pressure Loss Dp to measured point value Traditional Dp 109 Actual PRR RO FL 4 Any positive, non-0.0 1.00 Ratio of measured Recovery Dp System zero IEEE floating to measured Traditional Dp point value

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
110	Actual RPR	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Ratio of measured recovery Dp to permanent pressure loss Dp
111	Calibration PLR	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	PLR as defined by either theoretical or calibration source Source depends upon meter type and other options.
112	Calibration PRR	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	PRR as defined by either theoretical or calibration source Source depends upon meter type and other options.
113	Calibration PLR Prime	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Calibration PLR corrected for non-standard pressure losses upstream of the PPL tap
114	Calibration PRR Prime	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Calibration PRR corrected for non-standard pressure losses upstream of the PPL tap
115	Calibration PLR Prime Z	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Calibration PLR Prime corrected for a fixed meter bias This is the final theoretical PLR – including all corrections.
116	Calibration PRR Prime Z	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Calibration PRR Prime corrected for a fixed meter bias This is the final theoretical PRF – including all corrections.
117	Calibration RPR Prime Z	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	RPR calculated from Calibratio PLR PrimeZ and Calibration PRR PrimeZ. This is the final theoretical PRR – including all corrections.
118	K Loss	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Loss Coefficient including obstructions and extra distance (beyond 6D) of PPL tap downstream
119	Head Loss	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Head loss associated with K Loss [meter]
120	Inferred Traditional Dp	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Traditional Dp derived from recovery DP and PPL Dp. This value is only calculated if all three Dp's are measured.

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
121	Traditional Dp Error Percent	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Percent difference between inferred traditional DP and measured traditional Dp
122	Traditional Expansion Factor	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Expansion factor calculated for the traditional meter
123	Reynolds Number	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Reynolds number calculated at inlet conditions
124	Discharge Coefficient Cd	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Discharge Coefficient for the traditional meter calculated using ISO 5167-2 equation 4
125	Recovery Meter Coefficient Kr	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Meter coefficient for the recover meter
126	Recovery Meter Coefficient Kr Prime	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Recovery meter coefficient Kr corrected for non-standard pressure losses upstream of the PPL tap
127	Recovery Meter Coefficient Kr Prime Z	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Recovery meter coefficient Kr Prime corrected for a fixed meter bias. This is the final Kr – including all corrections.
126	PPL Meter Coefficient Kppl	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Meter Coefficient for the PPL meter
129	PPL Meter Coefficient Kppl Prime	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	PPL meter coefficient Kppl corrected for non-standard pressure losses upstream of the PPL tap
130	PPL Meter Coefficient Kppl Prime Z	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	PPL meter coefficient Kpplprime corrected for a fixed meter bias. This is the final Kr – including all corrections.
131	Diagnostic x1	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Normalized, horizontal error of diagnostic point 1
132	Diagnostic y1	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Normalized, vertical error of diagnostic point 1

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
133	Diagnostic x2	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Normalized, horizontal error of diagnostic point 2
134	Diagnostic y2	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Normalized, vertical error of diagnostic point 2
135	Diagnostic x3	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Normalized, horizontal error of diagnostic point 3
136	Diagnostic y3	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Normalized, vertical error of diagnostic point 3
137	Diagnostic x4	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Normalized, horizontal error of diagnostic point 4
138	Raw x1 1	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x1 from the first averaging iteration
139	Raw x1 2	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x1 from the 2nd averaging iteration
140	Raw x1 3	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x1 from the 3rd averaging iteration
141	Raw x1 4	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x1 from the 4th averaging iteration
142	Raw x1 5	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x1 from the 5th averaging iteration
143	Raw x1 6	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x1 from the 6th averaging iteration
144	Raw x1 7	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x1 from the 7th averaging iteration
145	Raw x1 8	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x1 from the 8th averaging iteration

Parm #		Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
146	Raw x1 9		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x1 from the 9th averaging iteration
147	Raw x2 1		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x2 from the first averaging iteration
148	Raw x2 2		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x2 from the 2 nd averaging iteration
149	Raw x2 3		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x2 from the 3rd averaging iteration
150	Raw x2 4		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x2 from the 4th averaging iteration
151	Raw x2 5		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x2 from the 5th averaging iteration
152	Raw x2 6		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x2 from the 6th averaging iteration
153	Raw x2 7		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x2 from the 7th averaging iteration
154	Raw x2 8		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x2 from the 8th averaging iteration
155	Raw x2 9		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x2 from the 9th averaging iteration
156	Raw x3 1		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x3from the first averaging iteration
157	Raw x3 2		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x3 from the 2nd averaging iteration
158	Raw x3 3		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x3 from the 3rd averaging iteration

Parm #		Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
159	Raw x3 4		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x3 from the 4th averaging iteration
160	Raw x3 5		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x3 from the 5th averaging iteration
161	Raw x3 6		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x3 from the 6th averaging iteration
162	Raw x3 7		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x3 from the 7th averaging iteration
163	Raw x3 8		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x3 from the 8th averaging iteration
164	Raw x3 9		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x3 from the 9th averaging iteration
165	Raw x4 1		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x4 from the first averaging iteration
166	Raw x4 2		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x4 from the 2nd averaging iteration
167	Raw x4 3		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x4 from the 3rd averaging iteration
168	Raw x4 4		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x4 from the 4th averaging iteration
169	Raw x4 5		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x4 from the 5th averaging iteration
170	Raw x4 6		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x4 from the 6th averaging iteration
171	Raw x4 7		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x4 from the 7th averaging iteration

Parm #		Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
172	Raw x4 8		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x4 from the 8th averaging iteration
173	Raw x4 9		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	x4 from the 9th averaging iteration
174	Raw y1 1		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y1 from the first averaging iteration
175	Raw y1 2		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y1 from the 2nd averaging iteration
176	Raw y1 3		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y1 from the 3rd averaging iteration
177	Raw y1 4		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y1 from the 4th averaging iteration
178	Raw y1 5		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y1 from the 5th averaging iteration
179	Raw y1 6		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y1 from the 6th averaging iteration
180	Raw y1 7		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y1 from the 7th averaging iteration
181	Raw y1 8		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y1 from the 8th averaging iteration
182	Raw y1 9		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y1 from the 9th averaging iteration
183	Raw y2 1		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y2 from the first averaging iteration
184	Raw y2 2		RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y2 from the 2nd averaging iteration

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
185	Raw y2 3	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y2 from the 3rd averaging iteration
186	Raw y2 4	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y2 from the 4th averaging iteration
187	Raw y2 5	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y2 from the 5th averaging iteration
188	Raw y2 6	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y2 from the 6th averaging iteration
189	Raw y2 7	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y2 from the 7th averaging iteration
190	Raw y2 8	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y2 from the 8th averaging iteration
191	Raw y2 9	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y2 from the 9th averaging iteration
192	Raw y3 1	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y3 from the first averaging iteration
193	Raw y3 2	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y3 from the 2nd averaging iteration
194	Raw y3 3	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y3 from the 3rd averaging iteration
195	Raw y3 4	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y3 from the 4th averaging iteration
196	Raw y3 5	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y3 from the 5th averaging iteration
197	Raw y3 6	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y3 from the 6th averaging iteration

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
198	Raw y3 7	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y3 from the 7th averaging iteration
199	Raw y3 8	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y3 from the 8th averaging iteration
200	Raw y3 9	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	y3 from the 9th averaging iteration
201	Traditional to PPL Pressure Difference	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Error in PPL expressed in percent
202	Traditional to Recovery Pressure Difference	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Error in PRR expressed in percent
203	Recovery to PPL Pressure Difference	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Error in RPR expressed in recovery percent
204	Diagnostic Attempt Counter	RO	System	U32	4	0 to 4294967295	0	1.00	Number of times a diagnostic has been attempted
205	Diagnostic Completion Counter	RO	System	U32	4	0 to 4294967295	0	1.00	Number of times a diagnostic has completed successfully
206	Last Diagnostic Completion Timestamp	RO	System	U32	4	0 to 4294967295	0	1.00	Date/time of the last completed diagnostic [number of seconds since 01/01/1970]
207	Seconds Until Next Scheduled Diagnostic Run	RO	System	U32	4	0-4294967295	0	1.00	Countdown timer for schedulec execution of diagnostics
208	Program Status Code	RO	System	U16	2	0-65535	0.0	1.00	Numeric code indicating status of the program
209	Тар Туре	RO	System	U8	1	0,1,2,10	0	1.00	Copy of (46,#,88). Valid values are: 0 = Orifice with flange taps 1 = Orifice with corner taps 2 = Orifice with D – D/2 taps 10 = Venturi
210	Average Count	RO	System	U8	1	0-9	0	1.00	Counter used for averaging of and y output values

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
211	Alarm Byte	RO	System	U8	1	0 to 127	0	1.00	Packed representation of the alarm status of the four diagnostic points. bit0 indicates x1 Alarm bit1 indicates y1 Alarm bit2 indicates y2 Alarm bit3 indicates y2 Alarm bit4 indicates x3 Alarm bit5 indicates y3 Alarm bit6 indicates x4 Alarm bit7 is always 0 If the indicated diagnostic is greater than 1.0, the associated bit will be of value 1, otherwise, the bit will be zero. Example: Y1, X2, and x4 are greater than 1.0 Value = binary 01000110 or decimal 70
212	Pattern Alarm Code	RO	User	UINT8	1	0-25, 255	255	1.00	A code indicating which pattern was matched to the diagnostic results
213	x1 Exception Byte	RO	System	UINT8	1	0,1	0	1.00	A value of 1 indicates an exception for the x1 diagnostic
214	x2 Exception Byte	RO	System	UINT8	1	0,1	0	1.00	A value of 1 indicates an exception for the x2 diagnostic
215	x3 Exception Byte	RO	System	UINT8	1	0,1	0	1.00	A value of 1 indicates an exception for the x3 diagnostic
216	x4 Exception Byte	RO	System	UINT8	1	0,1	0	1.00	A value of 1 indicates an exception for the x4 diagnostic
217	y1 Exception Byte	RO	System	UINT8	1	0,1	0	1.00	A value of 1 indicates an exception for the y1 diagnostic
218	y2 Exception Byte	RO	System	UINT8	1	0,1	0	1.00	A value of 1 indicates an exception for the y2 diagnostic
219	y3 Exception Byte	RO	System	UINT8	1	0,1	0	1.00	A value of 1 indicates an exception for the y3 diagnostic

Parm #	Name	Access	System or User Update	Data Type	Length	Range	Default	Version	Description of functionality and meaning of values
220	L over D	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Actual distance to PPL tap made dimensionless by dividing it by the meter inlet diameter
221	Suggested Z	RO	System	FL	4	Any positive, non- zero IEEE floating point value	0.0	1.00	Value of PLR offset (Z) which will "zero" the meter for Prognosis FC
222	Meter UOM System	RO	System	UINT8	1	0,1,2	0	1.00	Copy of the units of measure system for the station (in ROC800 gas meter station structure) associated with the meter. Valid values are: 0 = U.S. units 1 = KPa 2 = Bar
223	Low Traditional DP Cutoff	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	0.00	If the traditional DP [in Pa] is below this value, DP diagnostic calculations will be suspended
224	Low Recovery DP Cutoff	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	0.00	If the recovery DP [in Pa] is below this value, DP diagnostic calculations will be suspended
225	Low Permanent DP Cutoff	R/W	User	FL	4	Any positive, non- zero IEEE floating point value	0.0	0.00	If the permanent DP [in Pa] is below this value, DP diagnostic calculations will be suspended

4.2 **Program Status Codes and Messages**

The following table describes program status codes and messages.

Code	Message	Suggested Corrective Action	
0	ОК	None required	
1	SQRTof Neg, Rec Flow	Check recovery DP input	
2	SQRTof Neg, PPL Flow	Check permanent DP input	
3	Unsupported Mtr Type	Meter type must be orifice, Venturi, or cone	
4	Allow Err Pct 0 PPL	Check allowable error percentages – they must be greater than zero	
5	Flow Zero Traditnl	Check traditional DP input and meter configuration in the ROC meter	
6	Allow Err Pct 0 REC	Check allowable error percentages – they must be greater than zero	
7	Allow Err Pct 0 PPL3	Check allowable error percentages – they must be greater than zero	
8	Flow Zero PPL	Check permanent DP input	
9	Trad Dp Zero	Check traditional DP input	
10	PPL Dp Zero,Y1	Check permanent DP input	
11	Meter Area Error	Check meter size configuration in ROC meter	
12	Trad Dp Zero,Ratios	Check traditional and permanent DP inputs	
13	PIrCalprimeZ zero	Check PLR calculation method (advanced configuration)	
14	PrrCalPrimeZ zero	Check PRR calculation method (advanced configuration)	
15	RprcalPrimeZ zero	Check RPR calculation method (advanced configuration)	
16	Max Accept a zero	Check allowable error percentages – they must be greater than zero	
17	Max Accept b zero	Check allowable error percentages – they must be greater than zero	
18	Max Accept c zero	Check allowable error percentages – they must be greater than zero	
19	Tradnl Dp Source Err	Check meter DP input configuration in ROC meter	
20	Must have two DPs	Check configuration of recovery and permanent DP inputs	
21	No License	Obtain and install a license key for the softwarer	
22	Kr Polynoml Coef Err	Check curve fit coefficients for Kr method (advanced configuration)	
23	Kppl Polynml Coef Er	Check curve fit coefficients for Kppl method (advanced configuration)	
24	Cd Polynoml Coef Err	Check curve fit coefficients for Cd method (advanced configuration)	
25	Invalid Cd Method	Check Cd Method (advanced configuration)	
26	Invalid Kr Method	Check Kr Method (advanced configuration)	
27	Invalid Kppl Method	Check Kppl Method (advanced configuration)	

DP – Prognosis FC User Manual (for ROC800-Series)

Code	Message	Suggested Corrective Action
28	Invalid PLR Method	Check PLR Method (advanced configuration)
29	PLR Polynoml Coef Er	Check curve fit coefficients for PLR method (advanced configuration)
30	PRR Polynoml Coef Er	Check curve fit coefficients for PRR method (advanced configuration)
31	RPR Polynoml Coef Er	Check curve fit coefficients for RPR method (advanced configuration)
32	Ival PRatio Mtd Comb	Check Cd, Kr, Kppl, PLR, PRR, and RPR methods
33	DP too low for a run	Wait until flow through the meter increases or decrease meter restriction size to increase Dp values

4.3 Pattern Match Codes and Messages

Code	Message	Description	
0	Within Acceptable Limits	Meter is performing correctly	
1	Traditional DP is reading high	Error in the traditional DP reading. Sensor calibration, manifold valve, impulse line	
2	Traditional DP is reading low	Error in the traditional DP reading. Sensor calibration, manifold valve, impulse line	
3	PPL DP is reading high	Error in the permanent DP reading. Sensor calibration, manifold valve, impulse line	
4	PPL DP is reading low	Error in the permanent DP reading. Sensor calibration, manifold valve, impulse line	
5	One or more DP is in Error	Comparison of the three measured DPs is out of acceptable range	
6	Recovery DP is reading low	Error in the recovery DP reading. Sensor calibration, manifold valve, impulse line	
7	Recovery DP is reading high	Error in the recovery DP reading. Sensor calibration, manifold valve, impulse line	
8	Condition 8	One or more of the following might be the cause:	
		 Disturbed Flow, may be over-reading or under-reading 	
		 Unseated orifice meter (dual chamber, plate not fully wound down, leak under plate), under-reading or, any of the below that all cause an over-reading 	
		 Partial blockage of orifice (relatively steady pattern for relatively steady flow, if blockage does not move) 	
		 Inlet diameter entered too small (relatively steady pattern for relatively steady flow) 	
		 Orifice diameter entered too large (relatively steady pattern for relatively steady flow) 	
		 Wet gas flow (highly unstable DPs and associated diagnostic points) 	
9	Condition 9	One or more of the following might be the cause:	
		Disturbed Flow, may be over-reading or under-reading or, any of the below that all cause an under-reading:	
		 Inlet diameter entered too large (relatively steady pattern for relatively steady flow) 	
		 Orifice diameter entered too small (relatively steady pattern for relatively steady flow) 	
		 Contamination (relatively steady pattern in the short term for relatively steady flow – can change over time as contamination increases or decreases) 	
		 Buckled plate (relatively steady pattern for relatively steady flow) 	
		 Worn edge plate (relatively steady pattern in the short term for relatively steady flow – change over time as wear increases) 	
		 Backwards plate (steady pattern for relatively steady flow – extreme coordinates, points well outside box, more extreme than worn edge). 	

The following table describes pattern match codes and messages.

Code	Message	Description	
10	Condition 10	One or more of the following might be the cause:	
		 the entered inlet diameter is too large 	
		 the entered cone diameter is too small 	
		 the entered kppl is too small 	
11	Condition 11	One or more of the following might be the cause:	
		the entered inlet diameter is too small	
		 the entered cone diameter is too large 	
		 the entered kppl is too high 	
12	Entry Cd Too High	Meter restriction size is incorrectly configured in the flow computer	
		or	
		Curve fit calculation for Cd is producing invalid values. Check coefficients.	
13	Entry Cd Too Low	Meter restriction size is incorrectly configured in the flow computer	
		or	
		Curve fit calculation for Cd is producing invalid values. Check coefficients.	
14	Entry Kr Too High	Curve fit calculation for Kr is producing invalid values. Check coefficients.	
15	Entry Kr Too Low	Curve fit calculation for Kr is producing invalid values. Check coefficients.	
16	Entry PLR Too Low	Curve fit calculation for PLR is producing invalid values. Check coefficients.	
17	Entry PLR Too High	Curve fit calculation for PLR is producing invalid values. Check coefficients.	
18	Entry PRR Too Low	Curve fit calculation for PRR is producing invalid values. Check coefficients.	
19	Entry PRR Too High	Curve fit calculation for PRR is producing invalid values. Check coefficients.	
20	Entry RPR Too Low	Curve fit calculation for RPR is producing invalid values. Check coefficients.	
21	Entry RPR Too High	Curve fit calculation for RPR is producing invalid values. Check coefficients.	
22	Condition 22	One or more of the following might be the cause:	
		 wet gas 	
		 obstructed cone 	
		 damaged cone 	
23	Condition 23	One or more of the following might be the cause:	
		 the entered inlet diameter is too small 	
		 the entered throat diameter is too large 	
		 the entered kppl is too small 	

Code	Message	Description	
24	Condition 24	One or more of the following might be the cause:	
		 the entered inlet diameter is too large 	
		 the entered throat diameter is too small 	
		 the entered kppl is too large 	
25	Possible Wet Gas	Wet gas induces "noise" in Prognosis FC signals. If the "number to average" parameter is configured high enough, this "noise" will be reduced by the averaging process. The values from the individual "runs" can be viewed via the values displayed on the "detail" tab (parameters 138 through 173) and the degree of variation can be observed.	

4.4 Zeroing the meter for Prognosis FC

Certain characteristics of the meter run configuration and the gas can cause the pressure loss ratio of a DP meter to shift. Among these conditions are:

- Far downstream (permanent) pressure tap is more than the idea distance downstream
- A thermowell or other obstruction is installed upstream of the far downstream (permanent) pressure tap
- Wet gas

One way to account for the tap location and/or obstruction is to use knowledge of the meter configuration along with the configuration parameters provided.

Configuration	
Meter Type Orifice	Recovery Dp Source Normal/High 98, 0, 4 Low Dp Setpoint 0.0 Low 0, 0, 0 High Dp Setpoint 0.0
Acceptable Variances [%] of Cd 1.0 of PLR 2.6 of Kr 2.0 of PRR 2.2 of Kppl 3.0 of RPR 2.8 of traditional Dp 1.0	Permanent Dp Source Normal/High 98, 0, 5 Low Dp Setpoint 0.0 Low 0, 0, 0 High Dp Setpoint 0.0
Diagnostic Scheduling Schedule type Scheduling Disabled 💌	Alarming C No Alarming Single, Combined Diagnostic Alarm Alarm Individual Diagnostics Alarm on Pattern Matching
Distance of PPL Tap Downstream 0.0 inch L/D 6.0 Obstruction Minor Loss Coefficient 0.0 Friction Factor 0.012	Number of Diagnostics to Average 4
	R Offset Factor 0.0505969

Another option is to "zero the meter". This is done as follows:

- Insure (via inspection and calibration) that the meter is performing to specification
- Observe the Suggested PLR Offset Factor value displayed in the DP Diagnostic Program's Configuration tab
- Enter the suggested value into the **PLR Offset Factor** parameter on the DP Diagnostic Program's **Configuration** tab
- Apply changes

For customer service and technical support, visit www.EmersonProcess.com/Remote/Support.

Global Headquarters,

North America, and Latin America: Emerson Automation Solutions Remote Automation Solutions 6005 Rogerdale Road Houston, TX 77072 U.S.A. T +1 281 879 2699 | F +1 281 988 4445 www.EmersonProcess.com/Remote

Europe:

Emerson Automation Solutions Remote Automation Solutions Unit 8, Waterfront Business Park Dudley Road, Brierley Hill Dudley UK DY5 1LX T +44 1384 487200 | F +44 1384 487258

Middle East/Africa:

Emerson Automation Solutions Remote Automation Solutions Emerson FZE P.O. Box 17033 Jebel Ali Free Zone – South 2 Dubai U.A.E. T +971 4 8118100 | F +971 4 8865465

Asia-Pacific:

Emerson Automation Solutions Remote Automation Solutions 1 Pandan Crescent Singapore 128461 T +65 6777 8211 | F +65 6777 0947 © 2017 Remote Automation Solutions, a business unit of Emerson Automation Solutions. All rights reserved.

This publication is for informational purposes only. While every effort has been made to ensure accuracy, this publication shall not be read to include any warranty or guarantee, express or implied, including as regards the products or services described or their use or applicability. Remote Automation Solutions (RAS) reserves the right to modify or improve the designs or specifications of its products at any time without notice. All sales are governed by RAS terms and conditions which are available upon request. RAS accepts no responsibility for proper selection, use or maintenance of any product, which remains solely with the purchaser and/or end-user.

